GESETZBLATT

der Deutschen Demokratischen Republik

BERLIN, 15. DEZEMBER 1958 · SONDERDRUCK NR. 289

Anordnung
über die Tafel
der gesetzlichen Einheiten

Vom 31. Oktober 1958

Anordnung über die Tafel der gesetzlichen Einheiten Vom 31. Oktober 1958

§ 1

Auf Grund des § 9 Ziff. 4 der Verordnung vom 14. August 1958 über die physikalisch-technischen Einheiten (GBl. I S. 647) wird die in der Anlage aufgeführte Tafel der gesetzlichen Einheiten für rechtsverbindlich erklärt.

§ 2

Diese Anordnung tritt mit ihrer Verkündung in Kraft.

Berlin, den 31. Oktober 1958

Der Präsident des Deutschen Amtes für Maß und Gewicht der Deutschen Demokratischen Republik

Stanek

The state of the s

61/6248+

TAFEL DER GESETZLICHEN EINHEITEN

Vorbemerkungen

1. Die Grundeinheiten und die abgeleiteten Einheiten sind in Spalte 1 laufend durchnumeriert. Nummern von Einheiten für die gleiche Größe stimmen in der vor dem Punkt stehenden Zahl überein. Die Grundeinheiten und die kohärent gebildeten Einheiten sind im Druck hervorgehoben worden, und zwar

Grundeinheiten: halbfette große Type unterstrichen, kohärent gebildete Einheiten: halbfette kleinere Type.

2. Dezimale Vielfache und Teile, die von Grundeinheiten und von abgeleiteten Einheiten mit selbständigem Namen gebildet werden, dürfen durch Anfügen eines der folgenden gesetzlichen Vorsätze (Einh. VO. § 6*)) bezeichnet werden, sofern sie hiervon nicht in Spalte 6 ausdrücklich ausgenommen sind (Einh. VO. § 9).

Vorsatz	Kurz- zeichen	Bedeutung		
Tera	T	1 000 000 000 000	(10 ¹²)	Einheiter
Giga	G	1 000 000 000	(10^9)	Einheiter
Mega	M	1 000 000	(10^6)	Einheiter
Kilo	k	1 000	(10^3)	Einheiter
Hekto	h	100	(10^2)	Einheiter
Deka	da	10	(10^1)	Einheiter
Dezi	d	0,1	(10-1)	Einheiter
Zenti	c	0,01	(10^{-2})	Einheiter
Milli	m	0,001	(10^{-3})	Einheiter
Mikro	μ	0,000 001	(10^{-6})	Einheiter
Nano	n	0,000 000 001	(10^{-9})	Einheiter
Pico	p	0,000 000 000 001	(10-12)	Einheite

 Soweit dezimale Vielfache und Teile, die von abgeleiteten Einheiten ohne selbständige Namen gebildet werden, durch Vorsätze nach Nr. 2 gebildet werden dürfen (Einh.VO. § 9), ist dies in Spalte 6 angegeben.

⁹⁾ Bezüge auf die Verordnung vom 14. 8. 58 über die physikalisch-technischen Einheiten sind innerhalb der Tafel durch den Hinweis "Einh. VO." bezeichnet.

Lfd. Nr.	Name der Einheit	Kurz- zeichen	Definition der Einheit
1	2 -	3	4
1.1	<u>Meter</u>	<u>m</u>	Das Meter ist der Abstand der Mittelstriche der auf dem Internationalen Meterprototyp angebrachten Strichgruppen bei der Gleichgewichtstemperatur zwischen Eis und reinem, luftgesättigtem
1.2	Seemeile	sm	Wasser unter dem Druck einer physikalischen Atmosphäre. Die Seemeile ist gleich 1852 Meter.
			2. Fläche
2.1	Quadratmeter	m²	Das Quadratmeter ist die Fläche eines Quadrates von der Seitenlänge 1 m.
2.2	Ar	a	Das Ar ist gleich 100 Quadratmeter.
2.3	Hektar	ha	Das Hektar ist gleich 100 Ar.
3.1	Kubikmeter Liter	m ³	3. Volumen Das Kubikmeter ist das Volumen eines Würfels von der Kantenlänge 1 m. Das Liter ist das Volumen von 1 kg reinen, luttfreien Wassers bei seiner maximalen Dichte einen Wassers bei seiner neutwikken.
			Dichte unter dem Druck einer physika- lischen Atmosphäre.

Beziehung der Einheit zu den Grundeinheiten	Besondere Bestimmungen
5	6
1 sm = 1 852 m	Die Seemeile ist nur für die Angabe von Entfernungen oder Wegstrecken in der Luft- und in der Seefahrt zulässig. Vielfache und Teile der Seemeile dürfen nicht durch einen Vorsatz nach Einh. VO. § 6 bezeichnet wer- den.
$1 \text{ m}^2 = 1 \text{ m} \cdot 1 \text{ m}$	Als Einheiten der Fläche sind auch alle Einheiten zulässig, die als Quadrat aus einer zulässigen Längeneinheit gebildet werden.
$1 a = 10^{2} \text{ m}^{2}$ $1 \text{ ha} = 100 \text{ a} = 10^{4} \text{ m}^{2}$	Vielfache und Teile des Ars und des Hektars dürfen nicht durch einen Vorsatz nach Einh. VO. § 6 gebildet werden.
$1 \text{ m}^3 = 1 \text{ m} \cdot 1 \text{ m} \cdot 1 \text{ m}$ $1 l = 1,000 \ 028 \cdot 10^{-3} \text{ m}^3$	Als Einheiten des Volumens sind auch alle Einheiten zulässig, die als Kubus aus einer zulässigen Längeneinheit gebildet werden.

Lfd. Nr.	Name der Einheit	Kurz- zeichen	Definition der Einheit
1	2	3	4
4,1	Radiant	rađ	4. Ebener Winkel Der Radiant ist der ebene Winkel, für den das Verhältnis der Längen des zugehörigen Kreisbogens zu seinem Halbmesser gleich 1
4.2	rechter Winkel, Rechter	L	ber rechte Winkel oder Rechte ist jeder der vier ebenen Winkel, die zwei sich unter gleichen Nebenwinkeln schneidende Geraden bilden.
4.3	Grad	•	Der Grad ist der 90ste Teil des rechten Winkels oder Rechten.
4.4	Minute		Die Minute ist der 60ste Teil des Grades.
4.5	Sekunde		Die Sekunde ist der 60ste Teil der Minute.
4.6	Neugrad, Gon		Der Neugrad oder das Gon ist der 100ste Teil des rechten Winkels oder Rechten.
5.1	Steradiant	Sr	5. Raumwinkel Der Steradiant ist der Raumwinkel, für den das Verhältnis der zugehörigen Kugelfläche zum Quadrat ihres Halbmessers gleich 1 ist.
6.1	Sekunde	8	6. Zeit Die Sekunde ist der 31 556 925,974 7te Teil des tropischen Jahres für 1900, Januar 0, 12 Uhr Ephemeridenzeit.
6.2	Minute	min	Die Minute ist gleich 60 Sekunden.
6.3	Stunde	h	Die Stunde ist gleich 60 Minuten.
6.4	Tag	d	Der Tag ist gleich 24 Stunden.
7.1	Hertz	Hz	7. Frequenz Das Hertz ist die Frequenz eines periodischen Vorganges von der Periodendauer 1 s.

Beziehung der Einheit zu den Grundeinheiten	Besondere Bestimmungen
5	6
$1^{\perp} = \frac{\pi}{2} \operatorname{rad}$ $1^{\circ} = \frac{1}{90}$	Vielfache und Teile der Winkeleinheiten, rechter Winkel oder Rechter, Grad, Minúte, Sekunde und Neugrad dürfen nicht durch einen Vorsatz nach Einh.VO. § 6 bezeichnet werden.
$1' = \frac{1^{\circ}}{60}$ $1'' = \frac{1'}{60}$ $1^{\circ} = 10^{-2} \bot$	Der 100ste Teil des Neugrads darf als Neu- minute (Kurzzeichen °), der 100ste Teil der Neuminute als Neusekunde (Kurzzeichen °°) bezeichnet werden.
1 min = 60 s 1 h = 60 min = 3 600 s 1 d = 24 h = 86 400 s	Vielfache und Teile der Zeiteinheiten Minute, Stunde und Tag dürfen nicht durch einen Vorsatz nach Einh. VO. § 6 bezeichnet werden.
1 Hz = 1 s+1	Bei Angabe von Umlauffrequenzen darf die Einheit Hertz als Umdrehung/Sekunde (Kurzzeichen U/s) bezeichnet werden. Außerdem sind als Einheiten für die Umlauffrequenz zulässig: die Umdrehung/Minute (Kurzzeichen U/min) gleich dem 60sten Teil der Umdrehung/Sekunde und die Umdrehung/Stunde (Kurzzeichen U/h) gleich dem 60sten Teil der Umdrehung/Minute.

Lfd. Nr.	Name der Einheit	Kurz- zeichen	Definition der Einheit
1	2	3	4
8.1	Meter/Sekunde	m/s	8. Geschwindigkeit Das Meter/Sekunde ist die Geschwindigkeit eines sich gleichmäßig bewegenden Körpers, der während der Zeit 1 s den Weg 1 m zu- rücklegt.
8.2	Knoten	kn	Der Knoten ist die Geschwindigkeit eines sich gleichmäßig bewegenden Luft- oder Wasserfahrzeugs, das während der Zeit 1 h den Weg 1 sm zurücklegt.
9,1	Meter/Quadrat- sekunde	m/s²	9. Beschleunigung Das Meter/Quadratsekunde ist die Beschleunigung eines Körpers, dessen Geschwindigkeit sich während der Zeit 1 s gleichmäßig um 1 m/s ändert.
10.1	Radiant/ Sekunde	rad/s	10. Winkelgeschwindigkeit Der Radiant/Sekunde ist die Winkelgeschwindigkeit eines gleichmäßig rotierenden Körpers, der sich während der Zeit 1 s um den Winkel 1 rad um seine Achse dreht.
11,1	Radiant/ Quadrat- sekunde	rad/s ²	11. Winkelbeschleunigung Der Radiant/Quadratsekunde ist die Winkelbeschleunigung eines Körpers, desser Winkelgeschwindigkeit sich während der Zeit 1 s gleichmäßig um 1 rad/s ändert.

The second secon	
Beziehung der Einheit zu den Grundeinheiten	Besondere Bestimmungen
5	6
$1 \text{ m/s} = 1 \text{ m s}^{-1}$ $1 \text{ kn} = 1 \text{ sm/h}$ $= \frac{1852}{3600} \text{ m s}^{-1}$	Als Einheiten der Geschwindigkeit sind auch alle Einheiten zulässig, die als Quotient aus einer zulässigen Längeneinheit und einer zulässigen Zeiteinheit gebildet werden. Der Knoten ist nur für Geschwindigkeitsangaben in der Luft- und in der Seefahrt zulässig. Vielfache und Teile des Knotens dürfen nicht durch einen Vorsatz nach Einh. VO. § 6 bezeichnet werden.
$1 \mathrm{m/s^2} = 1 \mathrm{m s^{-2}}$	Als Einheiten der Beschleunigung sind auch alle Einheiten zulässig, die als Quotient aus einer zulässigen Längeneinheit und dem Quadrat einer zulässigen Zeiteinheit gebildet werden. Der 100ste Teil des Meter/Quadratsekunde, das Zentimeter/Quadratsekunde, darf auch als Gal (Kurzzeichen Gal) bezeichnet werden.
1 rad/s = 1 s ⁻¹	Als Einheiten der Winkelgeschwindigkeit sind auch alle Einheiten zulässig, die als Quotient aus einer zulässigen Winkeleinheit und einer zulässigen Zeiteinheit gebildet werden.
1 rad/s² = 1 s-²	Als Einheiten der Winkelbeschleunigung sind auch alle Einheiten zulässig, die als Quotient aus einer zulässigen Winkeleinheit und dem Quadrat einer zulässigen Zeitein- heit gebildet werden.

Lfd. Nr.	Name der Einheit	Kurz- zeichen	Definition der Einheit
1	2	3	4
12.1	Kilogramm	kg .	Das Kilogramm ist die Masse des Internationalen Kilogrammprototyps.
12.2	Gramm	g	Das Gramm ist der 1 000ste Teil des Kilo- gramms.
12.3	Tonne	t	Die Tonne ist gleich 1 000 Kilogramm.
12.4	metrisches Karat	k	Das metrische Karat ist der 5 000ste Teil des Kilogramms.
13.1	Kilogramm/ Kubikmeter	kg/m³	13. Dichte Das Kilogramm/Kubikmeter ist die Dichte eines homogenen Körpers, der bei der Masse 1 kg das Volumen 1 m³ einnimmt.
14.1	Newton	N	14. Kraft Das Newton ist die Kraft, die der Masse 1 kg
			die Beschleunigung 1 m/s² erteilt.
. 14.2	Dyn	dyn	Das Dyn ist der 100 000ste Teil des Newton.
14.3	Kilopond	kp	Das Kilopond ist gleich 9,806 65 Newton.
14.4	Pond	p	Das Pond ist der 1 000ste Teil des Kiloponds.

The Market San Company of Comments	
Beziehung der Einheit zu den Grundeinheiten	Besondere Bestimmungen
5	6
$1 g = 10^{-3} kg$ $1 t = 10^{3} kg$ $1 k = 2 \cdot 10^{-4} kg$	Die durch einen Vorsatz nach Einh. VO. § 6 bezeichneten Vielfachen und Teile werden nicht von der Einheit Kilogramm, sondern von ihrem 1 000sten Teil, dem Gramm (lfd. Nr. 12.2) gebildet. Die bei Wägungen benutzten, zur Bestimmung der Masse dienenden Vergleichskörper werden Gewichtstücke oder Wägestücke genannt. Das metrische Karat ist nur für den Handel mit Diamanten, Perlen, Edelsteinen und Edelmetallen zulässig. Vielfache und Teile des metrischen Karats dürfen nicht durch einen Vorsatz nach Einh. VO. § 6 bezeid 1 et werden.
$1 \mathrm{kg/m^3} = 1 \mathrm{m^{-3} kg}$	Als Einheiten der Dichte sind auch alle Einheiten zulässig, die als Quotient aus einer zulässigen Masseeinheit und einer zulässigen Volumeneinheit gebildet werden. Die Dichteeinheiten dürfen auch für Schüttdichten benutzt werden.
1 N = 1 m kg s ⁻² 1 dyn = 10^{-5} N = 10^{-5} m kg s ⁻² 1 kp = $9,806 65$ N = $9,806 65$ m kg s ⁻² 1 p = 10^{-3} kp = $9,806 65 \cdot 10^{-3}$ m kg s ⁻²	Die durch einen Vorsatz nach Einh.VO. § 6 bezeichneten Vielfachen und Teile werden nicht von der Einheit Kilopond, sondern von ihrem 1000sten Teil, dem Pond (lfd. Nr. 14.4) gebildet.

Maria Ma	TANK DE L'ALLE D	A PRODUCTION OF THE PARTY OF TH	DESCRIPTION OF THE DOLLAR WAS ASSESSED. THE PROPERTY OF THE PR
Lfd. Nr.	Name der Einheit	Kurz- zeichen	Definition der Einheit
1	2	3	4
15.1	Newton/ Quadratmeter	N/m²	15. Druck Das Newton/Quadratmeter ist der Druck, den eine gleichmäßig verteilte Kraft von 1 N auf die Fläche 1 m² ausübt.
15.2	Bar	bar	Das Bar ist gleich 100 000 Newton/Quadrat- meter.
15.3	technische Atmosphäre	at	Die technische Atmosphäre ist gleich 10 000 Kilopond/Quadratmeter.
15.4	physikalische Atmosphäre	atm	Die physikalische Atmosphäre ist gleich 101 325 Newton/Quadratmeter.
15.5	Torr	Torr	Das Torr ist der 760ste Teil der physikalischen Atmosphäre.
			Committee of the commit
16.1	Newton- sekunde/ Quadratmeter		16. Dynamische Viskosität Die Newtonsekunde/Quadratmeter ist die dynamische Viskosität eines laminar strömenden, homogenen, isotropen Körpers, in dem zwischen zwei ebenen parallelen Schichten mit dem Geschwindigkeitsunterschied 1 m/s je 1 m Abstand in der Schichtfläche die Schubspannung 1 N/m² herrscht. Das Poise ist der 10te Teil der Newton-
16.2	Poise	P	sekunde/Quadratmeter.

Beziehung der Einheit zu den Grundeinheiten	Besondere Bestimmungen
5	6
$1 \mathrm{N/m^2} = 1 \mathrm{m^{-1} kg s^{-2}}$	Als Einheiten des Drucks sind auch alle Einheiten zulässig, die als Quotient aus einer zulässigen Krafteinheit und einer zu- lässigen Flächeneinheit gebildet werden.
1 bar = 10^5 N/m^2 = $10^5 \text{ m}^{-1} \text{ kg s}^{-2}$	
$1 \text{ at} = 10^4 \text{ kp/m}^2$ = 98 066,5 m ⁻¹ kg s ⁻²	Vielfache und Teile der technischen Atmosphäre dürfen nicht durch einen Vorsatz nach Einh. VO. § 6 bezeichnet werden:
	Der 10te Teil der technischen Atmosphäre darf auch als Meter Wassersäule (Kurz- zeichen mWS), der 1 000ste Teil als Zenti- meter Wassersäule (Kurzzeichen cmWS) und der 10 000ste Teil als Millimeter Was- sersäule (Kurzzeichen mmWS) bezeichnet werden
1 atm = 101 325 N/m ² = 101 325 m ⁻¹ kg s ⁻²	Vielfache und Teile der physikalischen Atmosphäre dürfen nicht durch einen Vor- satz nach Einh.VO.§6 bezeichnet werden.
$1 \text{ Torr} = \frac{1}{760} \text{ atm}$	
$= \frac{101\ 325}{760}\ \mathrm{m}^{-1}\mathrm{kg}\mathrm{s}^{-1}$	
$1 \mathrm{Ns/m^2} = 1 \mathrm{m^{-1} kg s^{-1}}$	Als Einheiten der dynamischen Viskosität sind auch alle Einheiten zulässig, die in der Form: zulässige Krafteinheit mal zulässige Zeiteinheit, dividiert durch eine zulässige Flächeneinheit gebildet werden.
$1 P = 10^{-1} Ns/m^{2}$ $= 10^{-1} m^{-1} kg s^{-1}$	

Lfd.	Name	Kurz-	Definition der Einheit
Nr.	der Einheit	zeichen	
1	2	3	4
17.1	Quadratmeter/ Sekunde	m²/s	17. Kinematische Viskosität Das Quadratmeter/Sekunde ist die kinematische Viskosität eines Körpers der dynamischen Viskosität 1 Ns/m² und der Dichte 1 kg/m³.
17.2	Stokes	St	Das Stokes ist der 10 000ste Teil des Quadratmeter/Sekunde.
18.1	Joule, Wattsekunde, Newtonmeter	J Ws Nm	18. Arbeit, Energie und Wärmemenge Das Joule, die Wattsekunde oder das Newtonmeter ist die Arbeit, die verrichtet wird, wenn sich der Angriffspunkt einer Kraft von 1 N in Richtung der Kraft um 1 m verschiebt.
18.2	Erg	erg'	Das Erg ist der 10 000 000ste Teil des Joule.
18.3	Kalorie	cal	Die Kalorie ist gleich 4,1868 Joule.
19.1	Watt	w	19. Leistung Das Watt ist die Leistung von 1 J/s.

Beziehung der Einheit zu den Grundeinheiten	Besondere Bestimmungen
5	6
$1 \text{ m}^2/\text{s} = \frac{1 \text{ Ns/m}^2}{1 \text{ kg/m}^3}$ $= 1 \text{ m}^2 \text{s}^{-1}$ $1 \text{ St} = 10^{-4} \text{ m}^2/\text{s}$ $= 10^{-4} \text{ m}^2 \text{ s}^{-4}$	Als Einheiten der kinematischen Viskosität sind auch alle Einheiten zulässig, die als Quotient aus einer zulässigen Flächeneinheit und einer zulässigen Zeiteinheit gebildet werden.
$1 J = 1 Ws = 1 Nm$ $= 1 m^{2} kg s^{-2}$ $1 erg = 10^{-7}J$ $= 10^{-7} m^{2} kg s^{-2}$ $1 cal = 4,186 8 J$ $= 4,186 8 m^{2} kg s^{-2}$	Als Einheiten der Arbeit, der Energie und der Wärmemenge sind auch alle Einheiten zulässig, die als Produkt aus einer zulässigen Krafteinheit und einer zulässigen Längeneinheit oder als Produkt aus einer zulässigen Leistungseinheit und einer zulässigen Zeiteinheit gebildet werden.
$1 \mathrm{W} = 1 \mathrm{J/s} = 1 \mathrm{m^2 kg s^{-\sigma}}$	Bei Angabe von elektrischen Scheinleistungen darf anstelle des Watt das Voltampere (Kurzzeichen VA), bei Angabe von elektrischen Blindleistungen das Var (Kurzzeichen var) benutzt werden. Als Einheiten der Leistung sind auch alle Einheiten zulässig, die als Quotient aus einer zulässigen Arbeitseinheit und einer zulässigen Zeiteinheit gebildet werden. Das 735,498 75fache des Watt (75 Kilopondmeter/Sekunde) darf bis auf weiteres noch als Pferdestärke (Kurzzeichen PS) bezeichnet werden.

Lfd. Nr.	Name der Einheit	Kurz- zeichen	Definition der Einheit
1	2	3	4
20.1	Ampere	<u>A</u>	20. Elektrische Stromstärke Das Ampere ist die Stärke eines zeitlich unveränderlichen elektrischen Stromes durch zwei geradlinige, parallele, unend- lich lange Leiter der relativen Permeabili- tät 1 und von vernachlässigbarem Quer- schnitt, die einen Abstand von 1 m ha- ben und zwischen denen die durch den Strom elektrodynamisch hervorgerufene Kraft im leeren Raum je 1 m Länge der Doppelleitung 2 · 10 ⁻⁷ m kg s ⁻² beträgt.
21.1	Volt		21. Elektrische Spannung Das Volt ist die elektrische Spannung zwischen zwei Punkten eines homogenen und gleichmäßig temperierten metallischen Leiters, in dem bei einem zeltlich unveränderlichen Strom der Stärke 1 A zwischen den beiden Punkten eine Leistung von 1 W umgesetzt wird.
22.1	Ohm	Ω	22. Elektrischer Widerstand Das Ohm ist der elektrische Widerstand zwischen zwei Punkten eines homogenen und gleichmäßig temperierten metallischen Leiters, durch den bei der Spannung IV zwischen den beiden Punkten ein zeitlich unveränderlicher Strom der Stärke 1 A fließt.
23.1	Siemens	S	23. Elektrischer Leitwert Das Siemens ist der elektrische Leitwert eines Leiters vom Widerstand 1 Ω .

Beziehung der Einheit zu den Grundeinheiten	Besondere Bestimmungen
5	8
	Das Ampere ist auch Einheit der magnetischen Spannung.
1 V = 1 W/A = $1 m^2 kg s^{-3} A^{-1}$	
$ 1 \Omega = 1 \text{ V/A} = 1 \text{ m}^2 \text{ kg s}^{-3} \text{ A}^{-2} $	
$ \begin{array}{l} 1 S = 1 A/V \\ = 1 m^{-2} kg^{-1} s^3 A^2 \end{array} $	

Lfd. Nr.	Name der Einheit	Kurz- zeichen	Definition der Einheit
1	2	3	4
24.1	Coulomb, Ampere- sekunde	C As	24. Elektrizitätsmenge (elektrische Ladung) Das Coulomb oder die Amperesekunde ist die Elektrizitätsmenge, die während der Zeit 1s bei einem zeitlich unveränderlichen Strom der Stärke 1 A durch den Querschnitt des Leiters fließt.
25.1	Farad	F	25. Elektrische Kapazität Das Farad ist die Kapazität eines Kondensators, der durch die Elektrizitätsmenge 1 C auf die Spannung 1 V aufgeladen wird.
26.1	Coulomb/ Quadratmeter	C/m²`	26. Elektrische Verschiebung (elektrische Verschiebungsdichte) Das Coulomb/Quadratmeter ist die elektrische Verschiebung in einem Plattenkondensator, dessen beide im leeren Raum parallel zueinander angeordnete, unendlich ausgedehnte Platten je 1 m² Fläche gleichmäßig mit einer Elektrizitätsmenge von 1 C aufgeladen sind.
27.1	Volt/Meter	V/m	27. Elektrische Feldstärke Das Volt/Meter ist die elektrische Feldstärke eines homogenen elektrischen Feldes, in dem der Spannungsabfall je 1 m Feldlinie 1 V beträgt.
28.1	Weber, Voltsekunde	Wb Vs	28. Magnetischer Fluß Das Weber oder die Voltsekunde ist der magnetische Fluß, der in einer ihn unschlingenden Windung die elektrische Spannung 1 V induziert, wenn er während der Zeit 1 s gleichmäßig auf null abnimmt.

Beziehung der Einheit zu den Grundeinheiten	Besondere Bestimmungen
5	6
1C = 1 As = 1s A	Als Einheiten der Elektrizitätsmenge sind auch alle Einheiten zulässig, die als Produkt aus einer zulässigen Einheit der elektri- schen Stromstärke und einer zulässigen Zeiteinheit gebildet werden.
$1 \mathbf{F} = 1 \mathbf{C} / \mathbf{V}$ $= 1 \mathbf{m}^{-2} \mathbf{k} \mathbf{g}^{-1} \mathbf{s}^{4} \mathbf{A}^{2}$	
$1 \text{ C/m}^2 = 1 \text{ m}^{-2} \text{ s A}$	Als Einheiten der elektrischen Verschiebung sind auch alle Einheiten zulässig, die als Quotient aus einer zulässigen Einheit der elektrischen Ladung und einer zulässigen Flächeneinheit gebildet werden.
$1 \text{ V/m} = 1 \text{ m kg s}^{-3} \text{ A}^{-1}$	Als Einheiten der elektrischen Feldstärke sind auch alle Einheiten zulässig, die als Quotient aus einer zulässigen Einheit der elektrischen Spannung und einer zulässigen Längeneinheit gebildet werden.
	Als Einheiten des magnetischen Flusses sind auch alle Einheiten zulässig, die als Pro- dukt aus einer zulässigen Einheit der elek- trischen Spannung und einer zulässigen Zeiteinheit gebildet werden.

Lfd. Nr.	Name der Einheit	Kurz- zeichen	Definition der Einheit
1	2	3	A STATE OF THE STA
29.1	Henry	H	29. Induktivität Das Henry ist die Induktivität einer geschlossenen Windung, die, von einem elektrischen Strom der Stärke 1 A durchflossen, im leeren Raum den magnetischen Fluß 1 Wb umschlingt.
30.1	Weber/ Quadratmeter, Voltsekunde/ Quadratmeter	Wb/m² Vs/m²	30. Magnetische Induktion (magnetische Flußdichte) Das Weber/Quadratmeter oder die Voltsekunde/Quadratmeter ist die magnetische Induktion eines homogenen magnetischen Flusses, der eine Fläche von 1 m² senkrecht mit der Stärke 1 Wb durchsetzt.
31,1	Ampere/Meter	A/m	31. Magnetische Feldstärke Das Ampere/Meter ist die magnetische Feldstärke, die im leeren Raum von einem elektrischen Strom der Stärke 1 A durch einen unendlich langen geraden Leiter von kreisförmigem Querschnitt auf dem Rand einer zum Leiterquerschnitt konzentrischen Kreisfläche von 1 m Umfang hervorgerufen-wird.
32.1	Grad Kelvin	<u>°K</u>	32. Kelvin-Temperatur Der Grad Kelvin ist der 273,16te Teil der thermodynamischen Kelvin-Temperatur des Tripelpunktes von reinem Wasser.

Beziehung der Einheit zu den Grundeinheiten	Besondere Bestimmungen
5	6
1 H = 1 Wb/A = $1 m^2 kg s^{-2} A^{-2}$	
$1 \mathrm{Wb/m^2} = 1 \mathrm{Vs/m^2} = 1 \mathrm{kg} \mathrm{s^{-2}} \mathrm{A^{-1}}$	Als Einheiten der magnetischen Induktion sind auch alle Einheiten zulässig, die als Quotient aus einer zulässigen Einheit des magnetischen Flusses und einer zulässigen Flächeneinheit gebildet werden.
1 A/m = 1 m ⁻¹ A	Als Einheiten der magnetischen Feldstärke sind auch alle Einheiten zulässig, die als Quotient aus einer zulässigen Einheit der elektrischen Stromstärke und einer zulässi- gen Längeneinheit gebildet werden.
	Bei Angabe von Temperaturdifferenzen werden der Name Grad Kelvin durch Grad, das Kurzzeichen °K durch grd ersetzt. Vielfache und Teile des Grad Kelvin dür- fen nicht durch einen Vorsatz nach Einh. VO. § 6 bezeichnet werden.

SHARE MADE SHOWING AND PROPERTY OF THE PARTY AND PARTY A	The same of the sa	
Name der Einheit	Kurz- zeichen	Definition der Einheit
2	3	4 and the second
Gråd Celsius	°C .	33. Celsius-Temperatur Der Grad Celsius ist als Temperaturdifferenz gleich dem Grad Kelvin. Die Celsius- Temperatur 0 °C entspricht der Kelvin- Temperatur 273,15 °K.
Candela	<u>cd</u>	34. Lichtstärke Die Candela ist die Lichtstärke, mit der ein Schwarzer Strahler bei der Temperatur des beim Druck einer physikalischen Atmosphäre erstarrenden Platins senkrecht zu seiner Oberfläche leuchtet, wenn diese 1 600 000 m² beträgt.
Candela/ Quadratmeter	cd/m ²	35. Leuchtdichte Die Candela/Quadratmeter ist der 600 000ste Teil der Leuchtdichte eines Schwarzen Strahlers bei der Temperatur des beim Druck einer physikalischen Atmosphäre er- starrenden Platins,
Lumen	lm	36. Lichtstrom Das Lumen ist der Lichtstrom, den eine Lichtquelle der Lichtstärke 1 cd gleichmäßig in den Raumwinkel 1 sr aussendet.
Lux	lx	37. Beleuchtungsstärke Das Lux ist die Beleuchtungsstärke einer Fläche, auf die senkrecht je Quadratmeter gleichmäßig der Lichtstrom 1 lm fällt.
	Candela/Quadratmeter	der Einheit zeichen 2 3 Gråd Celsius °C Candela cd Candela/Quadratmeter cd/m² Lumen lm

Beziehung der Einheit zu den Grundeinheiten	Besondere Bestimmungen
5	6
	Die Celsius-Skale wird praktisch realisiert durch die von der Generalkonferenz für Maß und Gewicht festgelegte Internationale Temperaturskale. Bei Angabe von Temperaturdifferenzen werden der Name Grad Celsius durch Grad, das Kurzzeichen '°C durch grd ersetzt. Vielfache und Teile des Grad Celsius dürfen nicht durch einen Vorsatz nach Einh. VO. § 6 bezeichnet werden.
$1\mathrm{cd/m^2}=1\mathrm{m^{-2}cd}$	Als Einheiten der Leuchtdichte sind auch alle Einheiten zulässig, die als Quotient aus einer zulässigen Einheit der Lichtstärke und einer zulässigen Flächeneinheit gebildet werden. Das 10 000fache der Candela/Quadratmeter, die Candela/Quadratzentimeter darf auch als Stilb (Kurzzeichen sb) bezeichnet werden.
l lm = 1 cd sr	
$1 lx = 1 lm/m^2$ = $1 m^{-2} cd sr$	

